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When we have a design in which we have both random and fixed variables, we have what 
is often called a mixed model. Mixed models have begun to play an important role in 
statistical analysis and offer many advantages over more traditional analyses. At the same 
time they are more complex and the syntax for software analysis is not always easy to set 
up. My original plan was to put together a document that looked at many different kinds 
of designs and the way to use them. However I have decided that I can accomplish many 
of my goals by restricting myself to the analysis of repeated measures designs. This is a 
place where such models have important advantages. I will ignore the use of mixed 
models to handle nested factors (other than subjects) because that is an even more 
complicated system. 
 
A large portion of this document has benefited from Chapter 15 in Maxwell & Delaney 
(2004) Designing experiments and analyzing data. They have one of the clearest 
discussions that I know. I am going a step beyond their example by including a between-
groups factor as well as a within-subjects (repeated measures) factor. For now my 
purpose is to show the relationship between mixed models and the analysis of variance. 
The relationship is far from perfect, but it gives us a known place to start. More 
importantly, it allows us to see what we gain and what we lose by going to mixed models. 
In some ways I am going through the Maxwell & Delaney chapter backwards, because I 
am going to focus primarily on the use of the repeated command in SAS Proc mixed.  I 
am doing that because it fits better with the transition from ANOVA to mixed models. 
 
My motivation for this document came from a question asked by Rikard Wicksell at 
Karolinska University in Sweden. He had a randomized clinical trial with two treatment 
groups and measurements at pre, post, 3 months, and 6 months. His problem is that some 
of his data were missing. He considered a wide range of possible solutions, including 
“last trial carried forward,” mean substitution, and listwise deletion. In some ways 
listwise deletion appealed most, but it would mean the loss of too much data. One of the 
nice things about mixed models is that we can use all of the data we have. If a score is 
missing, it is just missing. It has no effect on other scores from that same patient. 
 
Another advantage of mixed models is that we don’t have to be consistent about time. For 
example, and it does not apply in this particular example, if one subject had a follow-up 
test at 4 months while another had their follow-up test at 6 months, we simply enter 4 (or 
6) as the time of follow-up. We don’t have to worry that they couldn’t be tested at the 
same intervals.  
 
A third advantage of these models is that we do not have to assume sphericity or 
compound symmetry in the model. We can do so if we want, but we can also allow the 
model to select its own set of covariances or use covariance patterns that we supply. I 
will start by assuming sphericity because I want to show the parallels between the output 
from mixed models and the output from a standard repeated measures analysis of 



variance. I will then delete a few scores and show what effect that has on the analysis. 
Finally I will use Expectation Maximization (EM) to impute missing values and then feed 
the newly complete data back into a repeated measures ANOVA to see how those results 
compare.  
 
The Data 
 
I have created data to have a number of characteristics. There are two groups – a Control 
group and a Treatment group, measured at 4 times. These times are labeled as 0 (pretest), 
1 (one month posttest) 3 (3 months follow-up) and 6 (6 months follow-up). I created the 
treatment group to show a sharp drop at post-test and then sustain that drop (with slight 
regression) at 3 and 6 months. The Control group declines slowly over the 4 intervals but 
does not reach the low level of the Treatment group. There are noticeable individual 
differences in the Control group, and some subjects show a steeper slope than others. In 
the Treatment group there are individual differences in level but the slopes are not all that 
much different from one another. You might think of this as a study of depression, where 
the dependent variable is a depression score (e.g. Beck Depression Inventory) and the 
treatment is drug versus no drug. If the drug worked about as well for all subjects the 
slopes would be comparable and negative across time. For the control group we would 
expect some subjects to get better on their own and some to stay depressed, which would 
lead to differences in slope for that group. These facts are important because when we get 
to the random coefficient mixed model the individual differences will show up as 
variances in intercept, and any slope differences will show up as a significant variance in 
the slopes. For the standard ANOVA individual and for mixed models using the repeated 
command the differences in level show up as a Subject effect and we assume that the 
slopes are comparable across subjects.  
 
Some of the printouts that follow were generated using SAS Proc mixed, but I give the 
SPSS commands as well. (I also give syntas for R, but I warn you that running this 
problem under R, even if you have Pinheiro & Bates (2000) is very difficult. I only give 
these commands for one analysis, but they are relatively easy to modify for related 
analyses. 
 
The data follow. Notice that to set this up for ANOVA (Proc GLM) we read in the data 
one subject at a time. (You can see this is the data shown.) This will become important 
because we will not do that for mixed models. 
 
Group Subj    Time0    Time1    Time3  Time6 
1 1 296 175 187 242 
1 2 376 329 236 126 
1 3 309 238 150 173 
1 4 222   60   82 135 
1 5 150 271 250 266 
1 6 316 291 238 194 
1 7 321 364 270 358 
1 8 447 402 294 266 
1 9 220   70   95 137 
1 10 375 335 334 129 

1 11 310 300 253 190 
1 12 310 245 200 170 



Group Subj    Time0    Time1    Time3  Time6 
2 13 282 186 225 134 
2 14 317   31   85 120 
2 15 362 104 144 114 
2 16 338 132   91   77 
2 17 263   94 141 142 
2 18 138   38   16   95 

2 19 329   62   62     6 
2 20 292 139 104 184 
2 21 275   94 135 137 
2 22 150   48   20   85 
2 23 319   68   67   12 
2 24 300 138 114 174

 
 
A plot of the data follows: 
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The cell means and standard deviations follow.  

 

4. Group * Time

Measure: MEASURE_1

304.333 21.503 259.739 348.927

256.667 24.061 206.768 306.566

215.750 19.594 175.115 256.385

197.167 18.552 158.692 235.641

280.417 21.503 235.823 325.011

94.500 24.061 44.601 144.399

100.333 19.594 59.698 140.969

106.667 18.552 68.192 145.141

Time
1

2

3

4

1

2

3

4

Group
Control

Treatment

Mean Std. Error Lower Bound Upper Bound

95% Confidence Interval

 
 



Group means 

 

Estimates

Measure: MEASURE_1

243.896 16.405 209.874 277.918

145.479 16.405 111.457 179.501

Group
Control

Treatment

Mean Std. Error Lower Bound Upper Bound
95% Confidence Interval

 
 
 
  Grand Mean = 194.688 
 
 
The results of a standard repeated measures analysis of variance with no missing data and 
using SAS Proc GLM  follow. You would obtain the same results using the SPSS 
Univariate procedure. 
 
proc GLM ; 
   class group; 
   model time1 time2 time3 time4 = group/ nouni; 
   repeated time 4 (0, 1, 3, 6) polynomial /summary printm; 
 run;                                      
                   

                        The GLM Procedure 

                             Repeated Measures Analysis of Variance 

                        Tests of Hypotheses for Between Subjects Effects 

 

      Source              DF     Type III SS     Mean Square    F Value    Pr > F 

      group                1     230496.0000     230496.0000      17.89    0.0003 

      Error               22     283514.9583      12887.0436 

 

 

                                       The GLM Procedure 

                             Repeated Measures Analysis of Variance 

                   Univariate Tests of Hypotheses for Within Subject Effects 

 

Source       DF    Type III SS    Mean Square   F Value   Pr > F    G - G    H - F 

 

time         3    313917.7083    104639.2361     37.61   <.0001   <.0001   <.0001 

time*group   3     59791.7500     19930.5833      7.16   0.0003   0.0014   0.0007 

Error(time) 66    183603.5417      2781.8718 

 

                              Greenhouse-Geisser Epsilon    0.7302 

                              Huynh-Feldt Epsilon           0.8510 

         The GLM Procedure 

                             Repeated Measures Analysis of Variance 

                           Analysis of Variance of Contrast Variables 

 

 

Contrast Variable: time_1  The Linear Effect of Time (intervals = 0,1,2,3) 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

      Mean                         1     168155.6270     168155.6270      36.14    <.0001 

      group                        1       1457.2401       1457.2401       0.31    0.5814 

      Error                       22     102368.7996       4653.1273 



 

 

Contrast Variable: time_2  The quadratic Effect of Time (intervals = 0,1,2,3) 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

      Mean                         1     96614.20130     96614.20130      48.47    <.0001 

      group                        1     25235.52002     25235.52002      12.66    0.0018 

      Error                       22     43851.09686      1993.23168 

 

 

Contrast Variable: time_3 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

      Mean                         1     49147.88005     49147.88005      28.92    <.0001 

      group                        1     33098.98990     33098.98990      19.48    0.0002 

      Error                       22     37383.64520      1699.25660 
 
Here we see that each of the effects in the overall analysis is significant. We don’t care 
very much about the group effect because we expected both groups to start off equal at 
pre-test. What is important is the interaction, and it is significant at p = .0003. Clearly the 
drug treatment is having a differential effect on the two groups, which is what we wanted 
to see. The fact that the Control group seems to be dropping in the number of symptoms 
over time is to be expected and not exciting, although we could look at these simple 
effects if we wanted to. We would just run two analyses, one on each group. I would not 
suggest pooling the variances to calculate F, though that would be possible. 
 
In the printout above I have included tests on linear, quadratic, and cubic trend that will 
be important later. However you have to read this differently than you might otherwise 
expect. The first test for the linear component shows an F of 36.14 for “mean” and an F 
of 0.31 for “group.” Any other software that I have used would replace “mean” with 
“Time” and “group” with “Group × Time.” In other words we have a significant linear 
trend over time, but the linear × group contrast is not significant. I don’t know why they 
label them that way. (Well, I guess I do, but it’s not the way that I would do it.) I should 
also note that my syntax specified the intervals for time, so that SAS is not assuming 
equally spaced intervals. The fact that the linear trend was not significant for the 
interaction means that both groups are showing about the same linear trend. But notice 
that there is a significant interaction for the quadratic. 
                 
 
 
Mixed Model 
 
The use of mixed models represents a substantial difference from the traditional analysis 
of variance. For balanced designs the results will come out to be the same, assuming that 
we set the analysis up appropriately. But the actual statistical approach is quite different 
and ANOVA and mixed models will lead to different results whenever the data are not 
balanced or whenever we try to use different, and often more logical, covariance 
structures. 
 
First a bit of theory. Within Proc Mixed the repeated command plays a very important 
role in that it allows you to specify different covariance structures, which is something 



that you cannot do under Proc GLM . You should recall that in Proc GLM  we assume 
that the covariance matrix meets our sphericity assumption and we go from there. In 
other words the calculations are carried out with the covariance matrix forced to 
sphericity. If that is not a valid assumption we are in trouble. Of course there are 
corrections due to Greenhouse and Geisser and Hyunh and Feldt, but they are not optimal 
solutions. 
 
But what does compound symmetry, or sphericity, really represent? (The assumption is 
really about sphericity, but when speaking of mixed models most writers refer to 
compound symmetry, which is actually a bit more restrictive.) Most people know that 
compound symmetry means that the pattern of covariances or correlations is constant 
across trials. In other words, the correlation between trial 1 and trial 2 is equal to the 
correlation between trial 1 and trial 4 or trial 3 and trial 4, etc. But a more direct way to 
think about compound symmetry is to say that requires that all subjects in each group 
change in the same way over trials. In other words the slopes of the lines regressing the 
dependent variable on time are the same for all subjects. Put that way it is easy to see that 
compound symmetry can really be an unrealistic assumption. If some of your subjects 
improve but others don’t, you do not have compound symmetry and make an error if you 
use a solution that assumes that you do. Fortunately Proc Mixed allows you to specify 
some other pattern for those covariances. 
 
We can also get around the sphericity assumption using the MANOVA output from Proc 
GLM , but that too has its problems. Both standard univariate GLM and MANOVA GLM 
will insist on complete data. If a subject is missing even one piece of data, that subject is 
discarded. That is a problem because with a few missing observations we can lose a great 
deal of data and degrees of freedom. 
 
Proc Mixed with repeated is different. Instead of using a least squares solution, which 
requires complete data, it uses a maximum likelihood solution, which does not make that 
assumption. (We will actually use a Restricted Maximum Likelihood (REML) solution.) 
When we have balanced data both least squares and REML will produce the same 
solution if we specify a covariance matrix with compound symmetry. But even with 
balanced data if we specify some other covariance matrix the solutions will differ. At first 
I am going to force sphericity by adding type = cs (which stands for compound 
symmetry) to the repeated statement. I will later relax that structure. 
 
The first analysis below uses exactly the same data as for Proc GLM , though they are 
entered differently. Here data are entered in what is called “long form,” as opposed to the 
“wide form” used for Proc GLM . This means that instead of having one line of data for 
each subject, we have one line of data for each observation. So with four measurement 
times we will have four lines of data for that subject.  
 
Because we have a completely balanced design (equal sample sizes and no missing data) 
and because the time intervals are constant, the results of this analysis will come out 
exactly the same as those for Proc GLM  so long as I specify type = cs. The data follow: 
 



data WicksellLong; 
input subj time group dv; 
cards; 
1     0   1.00  296.00 
1     1   1.00  175.00 
1     3   1.00  187.00 
1     6   1.00  242.00 
2     0   1.00  376.00 
2     1   1.00  329.00 
2     3   1.00  236.00 
2     6   1.00  126.00 
3     0   1.00  309.00 
3     1   1.00  238.00 
3     3   1.00  150.00 
3     6   1.00  173.00 
4     0   1.00  222.00 
4     1   1.00    60.00 
4     3   1.00    82.00 
4     6   1.00  135.00 
5     0   1.00  150.00 
5     1   1.00  271.00 
5     3   1.00  250.00 
5     6   1.00  266.00 
6     0   1.00  316.00 
6     1   1.00  291.00 
6     3   1.00  238.00 
6     6   1.00  194.00 
7     0   1.00  321.00 
7     1   1.00  364.00 
7     3   1.00  270.00 
7     6   1.00  358.00 
8     0   1.00  447.00 
8     1   1.00  402.00 
8     3   1.00  294.00 
8     6   1.00  266.00 

9     0   1.00  220.00 
9     1   1.00    70.00 
9     3   1.00    95.00 
9     6   1.00   137.00 
10    0   1.00  375.00 
10    1   1.00  335.00 
10    3   1.00  334.00 
10    6   1.00  129.00 
11    0   1.00  310.00 
11    1   1.00  300.00 
11    3   1.00  253.00 
11    6   1.00  170.00 
12    0   1.00  310.00 
12    1   1.00  245.00 
12    3   1.00  200.00 
12    6   1.00  170.00 
13    0   2.00  282.00 
13    1   2.00  186.00 
13    3   2.00  225.00 
13    6   2.00  134.00 
14    0   2.00  317.00 
14    1   2.00    31.00 
14    3   2.00    85.00 
14    6   2.00  120.00 
15    0   2.00  362.00 
15    1   2.00  104.00 
15    3   2.00  144.00 
15    6   2.00  114.00 
16    0   2.00  338.00 
16    1   2.00  132.00 
16    3   2.00    91.00 
16    6   2.00    77.00 

17    0   2.00  263.00 
17    1   2.00    94.00 
17    3   2.00  141.00 
17    6   2.00  142.00 
18    0   2.00  138.00 
18    1   2.00    38.00 
18    3   2.00    16.00 
18    6   2.00    95.00 
19    0   2.00  329.00 
19    1   2.00    62.00 
19    3   2.00    62.00 
19    6   2.00      6.00 
20    0   2.00  292.00 
20    1   2.00  139.00 
20    3   2.00  104.00 
20    6   2.00  184.00 
21    0   2.00  275.00 
21    1   2.00    94.00 
21    3   2.00  135.00 
21    6   2.00  137.00 
22    0   2.00  150.00 
22    1   2.00    48.00 
22    3   2.00    20.00 
22    6   2.00    85.00 
23    0   2.00  319.00 
23    1   2.00    68.00 
23    3   2.00    67.00 
23    6   2.00    12.00 
24    0   2.00  300.00 
24    1   2.00  138.00 
24    3   2.00  114.00 
24    6   2.00  174.00

; 
 

/* The following lines plot the data */ 

Symbol1 I = join v = none r = 12; 

Proc gplot data = wicklong; 

   Plot dv*time = subj/ nolegend; 

   By group; 

Run; 

 

/* This is the main Proc Mixed procedure. */ 

Proc Mixed data = WicksellLong;                                                                                                         

class group subj time;                                                                                                                  

model dv = group time group*time;                                                                                                    

repeated time/subject = subj type = cs  rcorr;                                                                                                     

run;                                                                                                               

                                                                                                                                        

I have put the data in three columns to save space, but in SAS they would be entered as 
one long column.  
 
The first set of commands plots the results of each individual subject broken down by 
groups. Earlier we saw the group means over time. Now we can see how each of the 
subjects stands relative the means of his or her group. In the ideal world the lines would 
start out at the same point on the Y axis (i.e. have a common intercept) and move in 
parallel (i.e. have a common slope). That isn’t quite what happens here, but whether those 
are chance variations or systematic ones is something that we will look at later. We can 



see in the Control group that a few subjects decline linearly over time and a few other 
subjects, especially those with lower scores decline at first and then increase during 
follow-up. 
 
Plots (Group 1 = Control, Group 2 = Treatment) 
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For Proc Mixed we need to specify that group, time, and subj are class variables. This 
will cause SAS to treat them as factors. The model statement tells the program that we 
want to treat group and time as a factorial design and generate the main effects and the 
interaction. (I have not appended a “/s” to the end of the model statement because I don’t 
want to talk about the parameter estimates of treatment effects at this point, but most 
people would put it there.) The repeated command tells SAS to treat this as a repeated 
measures design, that the subject variable is named “subj”, and that we want to treat the 
covariance matrix as exhibiting compound symmetry, even though in the data that I 
created we don’t appear to come close to meeting that assumption. The specification 



“rcorr” will ask for the estimated correlation matrix. (we could use “r” instead of “rcorr,” 
but that would produce a covariance matrix, which is harder to interpret.) 
 
 
The results of this analysis follow, and you can see that they very much resemble our 
analysis of variance approach using Proc GLM . 
 
The SAS System 
 
The Mixed Procedure 

Model Information 

Data Set WORK.WICKLONG 

Dependent Variable dv 

Covariance Structure Compound Symmetry 

Subject Effect subj 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Between-Within 

 

Dimensions 

Covariance Parameters 2 

Columns in X 15 

Columns in Z 0 

Subjects 24 

Max Obs Per Subject 4 

 

Number of Observations 

Number of Observations Read 96 



Number of Observations 

Number of Observations Used 96 

Number of Observations Not Used 0 

 
 

Estimated R Correlation Matrix for subj 1 

Row Col1 Col2 Col3 Col4 

1 1.0000 0.4793 0.4793 0.4793 

2 0.4793 1.0000 0.4793 0.4793 

3 0.4793 0.4793 1.0000 0.4793 

4 0.4793 0.4793 0.4793 1.0000 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

CS subj 2536.07 

Residual   2754.98 

 

Fit Statistics 

-2 Res Log Likelihood 1000.6 

AIC (smaller is better) 1004.6 

AICC (smaller is better) 1004.8 

BIC (smaller is better) 1007.0 

 



 

Null Model Likelihood Ratio Test 

DF Chi-Square Pr > ChiSq 

1 23.47 <.0001 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 22 18.17 0.0003 

time 3 66 37.58 <.0001 

group*time 3 66   7.20 0.0003 

 

 
On the first page of this printout there is nothing particularly exciting except that it tells 
us that it uses a covariance structure of compound symmetry and that the solution is via 
REML, the solution that we will use for most problems. On the second page we see the 
estimated correlations between times. These are not the actual correlations, which appear 
below, but the estimates that come from an assumption of compound symmetry. That 
assumption says that the correlations have to be equal, and what we have here are 
basically average correlations. The actual correlations, averaged over the two groups 
using Fisher’s transformation, are: 
 
          Estimated R Correlation Matrix for subj 1 

 

                 Row        Col1        Col2        Col3        Col4 

 

                   1      1.0000      0.5695      0.5351    -0.01683 

                   2      0.5695      1.0000      0.8612      0.4456 

                   3      0.5351      0.8612      1.0000      0.4202 

                   4    -0.01683      0.4456      0.4202      1.0000 

 
Notice that they are quite different from the ones assuming compound symmetry, and that 
they don’t look at all as if they fit that assumption. We will deal with this problem later. 
(I don’t have a clue why the heading refers to “subj 1.” It just does!) 
 
 There are also two covariance parameters. Remember that there are two sources of 
random effects in this design. There is our normal 2

eσ , which reflects random noise. In 

addition we are treating our subjects as a random sample, and there is thus random 
variance among subjects.  Here I get to play a bit with expected mean squares. You may 
recall that the expected mean squares for the error term for the between-subject effect is 



( ) 2 2
/ _w in subj eE MS a πσ σ= +  and our estimate of 2eσ  is MSresidual, which is 2781.8718. The 

letter “a” stands for the number of measurement times = 4, and MSw/in subj = 12887.046. 
Therefore our estimate of 2πσ  = (12887.046-2781.8718)/4 = 2536.07. These two 

estimates are our random part of the model and are given in the section headed 
Covariance Parameter Estimates. I don’t see a situation in this example in which we 
would wish to make use of these values, but in other mixed designs they are useful. 
 
You may notice one odd thing in the data. Instead of entering time as 1,2,3, & 4 I entered 
it as 0, 1, 3, and 6. If this were a standard ANOVA it wouldn’t make any difference, and 
in fact it doesn’t make any difference here, but when we come to looking at intercepts 
and slopes, it will be very important how we designated the 0 point. We could have 
centered time by subtracting the mean time from each entry, which would mean that the 
intercept is at the mean time. I have chosen to make 0 represent the pretest, which seems 
a logical place to find the intercept. I will say more about this later. 
 
 
M ISSING DATA  

I have just spent considerable time discussing a balanced design where all of the data are 
available. Now I want to delete some of the data and redo the analysis. This is one of the 
areas where mixed designs have an important advantage.  I am going to delete scores 
pretty much at random, except that I want to show a pattern of different observations over 
time. It is easiest to see what I have done if we look at data in the wide form, so the 
earlier table is presented below with “.” representing missing observations. It is important 
to notice that data are missing completely at random, not on the basis of other 
observations. 
 
 
Group Subj    Time0    Time1    Time3  Time6 
1 1 296 175 187 242 
1 2 376 329 236 126 
1 3 309 238 150 173 
1 4 222   60   82 135 
1 5 150 . 250 266 
1 6 316 291 238 194 
1 7 321 364 270 358 
1 8 447 402 . 266 
1 9 220   70   95 137 
1 10 375 335 334 129 
1 11 310 300 253 . 
1 12 310 245 200 170 

Group Subj    Time0    Time1    Time3  Time6 
2 13 282 186 225 134 
2 14 317   31   85 120 
2 15 362 104 . . 
2 16 338 132   91   77 
2 17 263   94 141 142 
2 18 138   38   16   95 
2 19 329   .   .     6 
2 20 292 139 104 . 
2 21 275   94 135 137 
2 22 150   48   20   85 
2 23 319   68   67   . 
2 24 300 138 114 174

 
If we treat this as a standard repeated measures analysis of variance, using Proc GLM, we 
have a problem. Of the 24 cases, only 17 of them have complete data. That means that 
our analysis will be based on only those 17 cases. Aside from a serious loss of power, 
there are other problems with this state of affairs. Suppose that I suspected that people 



who are less depressed are less likely to return for a follow-up session and thus have 
missing data. To build that into the example I could deliberately deleted data from those 
who scored low on depression to begin with, though I kept their pretest scores. (I did not 
actually do this here.) Further suppose that people low in depression respond to treatment 
(or non-treatment) in different ways from those who are more depressed. By deleting 
whole cases I will have deleted low depression subjects and that will result in biased 
estimates of what we would have found if those original data points had not been 
missing. This is certainly not a desirable result. 
 
To expand slightly on the previous paragraph, if we using Proc GLM  , or a comparable 
procedure in other software, we have to assume that data are missing completely at 
random, normally abbreviated MCAR. (See Howell, 2008.) If the data are not missing 
completely at random, then the results would be biased. But if I can find a way to keep as 
much data as possible, and if people with low pretest scores are missing at one or more 
measurement times, the pretest score will essentially serve as a covariate to predict 
missingness. This means that I only have to assume that data are missing at random 
(MAR) rather than MCAR. That is a gain worth having. MCAR is quite rare in 
experimental research, but MAR is much more common. Using a mixed model approach 
requires only that data are MAR and allows me to retain considerable degrees of 
freedom. (That argument has been challenged by Overall & Tonidandel (2007), but in 
this particular example the data actually are essentially MCAR. I will come back to this 
issue later.) 
 
Proc GLM results 
 
The output from analyzing these data using Proc GLM  follows. I give these results just 
for purposes of comparison, and I have omitted much of the printout. 
 
                          Repeated Measures Analysis of Variance 
                        Tests of Hypotheses for Between Subjects Effects 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

      group                        1     126931.1767     126931.1767       8.97    0.0091 

      Error                       15     212237.4410      14149.1627 

 

                   Univariate Tests of Hypotheses for Within Subject Effects 

                                                                             Adj Pr > F 

Source              DF    Type III SS    Mean Square   F Value   Pr > F    G - G    H - F 

time                 3    201156.6493     67052.2164     27.34   <.0001   <.0001   <.0001 

time*group           3     20665.5905      6888.5302      2.81   0.0502   0.0696   0.0547 

Error(time)         45    110370.8507      2452.6856 

 

                              Greenhouse-Geisser Epsilon    0.7386 

                              Huynh-Feldt Epsilon           0.9300 

 

Notice that we still have a group effect and a time effect, but we have lost our significant 
interaction, which is what I cared most about. Also notice the big drop in degrees of 
freedom due to the fact that we now only have 17 subjects. 
 

 



Proc Mixed 
 
Now we move to the results using Proc mixed. I need to modify the data file put it in its 
long form and to replace missing observations with a period, but that means that I just 
altered 9 lines out of 96 (10% of the data) instead of 7 out of 24 (29%). The syntax would 
look exactly the same as it did earlier. The presence of “time” on the repeated statement 
is not necessary if I have included missing data by using a period, but it is needed if I just 
remove the observation completely. (At least that is the way I read the manual.) The 
results follow, again with much of the printout deleted:  
 
Proc Mixed data = wicklongMiss; 
   class group time subj; 
   model dv = group time group*time /s; 
   repeated time /subject = subj type = cs  rcorr; 
run; 
  

Estimated R Correlation Matrix for subj 1 

Row Col1 Col2 Col3 Col4 

1 1.0000 0.4640 0.4640 0.4640 

2 0.4640 1.0000 0.4640 0.4640 

3 0.4640 0.4640 1.0000 0.4640 

4 0.4640 0.4640 0.4640 1.0000 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

CS subj 2558.27 

Residual   2954.66 

 



 

Fit Statistics 

-2 Res Log Likelihood 905.4 

AIC (smaller is better) 909.4 

AICC (smaller is better) 909.6 

BIC (smaller is better) 911.8 

 

Null Model Likelihood Ratio Test 

DF Chi-Square Pr > ChiSq 

1 19.21 <.0001 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 22 16.53 0.0005 

time 3 57 32.45 <.0001 

group*time 3 57 6.09 0.0011 

 
                        

 
This is a much nicer solution, not only because we have retained our significance levels, 
but because it is based on considerably more data and is not reliant on an assumption that 
the data are missing completely at random. Again you see a fixed pattern of correlations 
between trials which results from my specifying compound symmetry for the analysis. 
 
Other Covariance Structures 
 
To this point all of our analyses have been based on an assumption of compound 
symmetry. (The assumption is really about sphericity, but the two are close and Proc 
Mixed refers to the solution as type = cs.) But if you look at the correlation matrix given 
earlier it is quite clear that correlations further apart in time are distinctly lower than 
correlations close in time, which sounds like a reasonable result. Also if you looked at 
Mauchly’s test of sphericity (not shown) it is significant with p = .012. While this is not a 
great test, it should give us pause. We really ought to do something about sphericity. 
 



The first thing that we could do about sphericity is to specify that the model will make no 
assumptions whatsoever about the form of the covariance matrix. To do this I will ask for 
an unstructured matrix. This is accomplished by including type = un in the repeated 
statement. This will force SAS to estimate all of the variances and covariances and use 
them in its solution. The problem with this is that there are 10 things to be estimated and 
therefore we will lose degrees of freedom for our tests. But I will go ahead anyway. For 
this analysis I will continue to use the data set with missing data, though I could have 
used the complete data had I wished. I will include a request that SAS use procedures due 
to Hotelling-Lawley-McKeon (hlm) and Hotelling-Lawley-Pillai-Samson  (hlps) which 
do a better job of estimating the degrees of freedom for our denominators for. This is 
recommended for an unstructured model. The results are shown below. 
 
Results using unstructured matrix 
 
Proc Mixed data = wicklongMiss; 
class group time subj; 
model dv = group time group*time; 
repeated time /subject = subj type = un hlm hlps rcorr; 
run; 

 

Estimated R Correlation Matrix for subj 1 

Row Col1 Col2 Col3 Col4 

1 1.0000 0.5858 0.5424 -0.02740 

2 0.5858 1.0000 0.8581 0.3896 

3 0.5424 0.8581 1.0000 0.3971 

4 -0.02740 0.3896 0.3971 1.0000 

 

Fit Statistics 

-2 Res Log Likelihood 883.7 

AIC (smaller is better) 903.7 

AICC (smaller is better) 906.9 

BIC (smaller is better) 915.5 

 



 

Null Model Likelihood Ratio Test 

DF Chi-Square Pr > ChiSq 

9 40.92 <.0001 

 
\ 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 22 17.95 0.0003 

timefact 3 22 28.44 <.0001 

group*timefact 3 22 6.80 0.0021 

 
 

Type 3 Hotelling-Lawley-McKeon Statistics 

Effect Num DF Den DF F Value Pr > F 

timefact 3 20 25.85 <.0001 

group*timefact 3 20 6.18 0.0038 

 

Type 3 Hotelling-Lawley-Pillai-Samson Statistics 

Effect Num DF Den DF F Value Pr > F 

timefact 3 20 25.85 <.0001 

group*timefact 3 20 6.18 0.0038 

 
 

Notice the matrix of correlations. From posttest to the 6 month follow-up the correlation 
with pretest scores has dropped from .59 to -.03, and this pattern is consistent. That 
certainly doesn’t inspire confidence in compound symmetry. 
 
The Fs have not changed very much from the previous model, but the degrees of freedom 
for within-subject terms have dropped from 57 to 22, which is a huge drop. That results 
from the fact that the model had to make additional estimates of covariances. Finally, the 



hlm and hlps statistics further reduce the degrees of freedom to 20, but the effects are still 
significant. This would make me feel pretty good about the study if the data had been real 
data. 
 
But we have gone from one extreme to another. We estimated two covariance parameters 
when we used type = cs and 10 covariance parameters when we used type = un. (Put 
another way, with the unstructured solution we threw up our hands and said to the 
program “You figure it out! We don’t know what’s going on.” There is a middle ground 
(in fact there are many). We probably do know at least something about what those 
correlations should look like. Often we would expect correlations to decrease as the trials 
in question are further removed from each other. They might not decrease as fast as our 
data suggest, but they should probably decrease. An autoregressive model, which we will 
see next, assumes that correlations between any two times depend on both the correlation 
at the previous time and an error component. To put that differently, your score at time 3 
depends on your score at time 2 and error. (This is a first order autoregression model. A 
second order model would have a score depend on the two previous times plus error.) In 
effect an AR(1) model assumes that if the correlation between Time 1 and Time 2 is .51, 
then the correlation between Time 1 and Time 3 has an expected value of .512 = .26 and 
between Time 1 and Time 4 has an expected value of.513 = .13. Our data look reasonably 
close to that. (Remember that these are expected values of r, not the actual obtained 
correlations.) The solution using a first order autoregressive model follows.  
 

Proc Mixed data = wicklongMiss; 
class group time subj; 
model dv = group time group*time; 
repeated time/subject = subj type = AR(1); 
run; 
 

Estimated R Correlation Matrix for group(subj) 
1 1 

Row Col1 Col2 Col3 Col4 

1 1.0000 0.6182 0.3822 0.2363 

2 0.6182 1.0000 0.6182 0.3822 

3 0.3822 0.6182 1.0000 0.6182 

4 0.2363 0.3822 0.6182 1.0000 

 



 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

AR(1) group(subj) 0.6182 

Residual   5350.25 

 

Fit Statistics 

-2 Res Log Likelihood 895.1 

AIC (smaller is better) 899.1 

AICC (smaller is better) 899.2 

BIC (smaller is better) 901.4 

 

Null Model Likelihood Ratio Test 

DF Chi-Square Pr > ChiSq 

1 29.55 <.0001 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 22 17.32 0.0004 

time 3 57 30.82 <.0001 

group*time 3 57   7.72 0.0002 

 
 
 

Notice the pattern of correlations. The .6182 as the correlation between adjacent trials is 
essentially an average of the correlations between adjacent trials in the unstructured case. 
The .3822 is just .61822 and .2363 = .61823. Notice that tests on within-subject effects are 
back up to 57 df, which is certainly nice, and our results are still significant. This is a far 
nicer solution than we had using Proc GLM . 
 



Now we have three solutions, but which should we choose? One aid in choosing is to 
look at the “Fit Statistics” that are printout out with each solution. These statistics take 
into account both how well the model fits the data and how many estimates it took to get 
there. Put loosely, we would probably be happier with a pretty good fit based on few 
parameter estimates than with a slightly better fit based on many parameter estimates. If 
you look at the three models we have fit for the unbalanced design you will see that the 
AIC criterion for the type = cs model was 909.4, which dropped to 903.7 when we 
relaxed the assumption of compound symmetry. A smaller AIC value is better, so we 
should prefer the second model. Then when we aimed for a middle ground, by specifying 
the pattern or correlations but not making SAS estimate 10 separate correlations, AIC 
dropped again to 899.1. That model fit better, and the fact that it did so by only 
estimating a variance and one correlation leads us to prefer that model. 
  
 
SPSS Mixed 
 
You can accomplish the same thing using SPSS if you prefer. I will not discuss the 
syntax here, but the commands are given below. You can modify this syntax by replacing 
CS with UN or AR(1) if you wish. 
 

MIXED 
  dv  BY Group Time 
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
  SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, 
ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = Group Time Group*Time  | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = DESCRIPTIVES SOLUTION 
  /REPEATED = Time | SUBJECT(Subj) COVTYPE(CS) 
  /EMMEANS = TABLES(Group) 
  /EMMEANS = TABLES(Time) 
  /EMMEANS = TABLES(Group*Time)  . 
 

 
 
Analyses Using R 
 
The following commands will run the same analysis using the R program (or using S-
Plus). The results will not be exactly the same, but they are very close. Lines beginning 
with # are comments. 
 

# Analysis of Wicklund Data with missing values 
data <- read.table(file.choose(), header = T) 
attach(data) 
Time = factor(Time) 
Group = factor(Group) 
Subj = factor(Subj) 
library(nlme) 



model <- lme(dv ~ Time + Group + Time*Group,  random = ~1 | Subj) 
#model2 <- update(model, correlation = corCompSymm(.388,form = ~1 | Subj)) 
# This line above leads to weird results and I don’t know why. 
summary(model) 
anova(model) 
# This model is very close to the one produced by SAS using compound 
#symmetry, 
# when it comes to F values, and the log likelihood is the same. But the AIC 
# and BIC are quite different. The StDev for the Random Effects are the same 
# when squared. The coefficients are different because R uses the first level 
# as the base, whereas SAS uses the last. 

 
 
Mixed Models by a More Traditional Route 
 
Because I was particularly interested in the analysis of variance, I approached the 
problem of mixed models first by looking at the use of the repeated statement in Proc 
mixed. Remember that our main problem in any repeated measures analysis is to handle 
the fact that when we have several observations from the same subject, our error terms 
are going to be correlated. This is true whether the covariances fit the compound 
symmetry structure or we treat them as unstructured or autoregressive. But there is 
another way to get at this problem. Look at the completely fictitious data shown below. 
 

  
 
Now look at the pattern of correlations. 
 Correlations 
 

    time1 time2 time3 time4 time5 
time1   1 .987(*) .902 .051 -.286 
time2   .987(*) 1 .959(*) .207 -.131 
time3   .902 .959(*) 1 .472 .152 
time4   .051 .207 .472 1 .942 
time5   -.286 -.131 .152 .942 1 

*  Correlation is significant at the 0.05 level (2-tailed). 
 
 
 
Except for the specific values, these look like the pattern we have seen before. I 
generated them by simply setting up data for each subject that had a different slope. For 
Subject 1 the scores had a very steep slope, whereas for Subject 4 the line was almost 
flat. In other words there was variance to the slopes. Had all of the slopes been equal (the 
lines parallel) the off-diagonal correlations would have been equal except for error, and 



the variance of the slopes would have been 0. But when the slopes were unequal their 
variance was greater than 0 and the times would be differentially correlated. 
 
As I pointed out earlier, compound symmetry is associated directly with a model in 
which lines representing changes for subjects over time are parallel. That means that 
when we assume compound symmetry, as we do in a standard repeated measures design, 
we are assuming that pattern for subjects. Their intercepts may differ, but not their slopes. 
One way to look at the analysis of mixed models is to fiddle with the expected pattern of 
the correlations, as we did with the repeated command. Another way is to look at the 
variances in the slopes, which we will do with the random command. With the 
appropriate selection of options that results will be the same. 
 
We will start first with the simplest approach. We will assume that subjects differ on 
average (i.e. that they have different intercepts), but that they have the same slopes. This 
is really equivalent to our basic repeated measures ANOVA where we have a term for 
Subjects, reflecting subject differences, but where our assumption of compound 
symmetry forces us to treat the data by assuming that however subjects differ overall, 
they all have the same slope. I am using the missing data set here for purposes of 
comparison. 
 
Here we will replace the repeated command with the random command. The “int” on the 
random statement tells the model to fit a different intercept for each subject, but to 
assume that the slopes are constant across subjects. I am requesting a covariance structure 
with compound symmetry. 
 
Proc Mixed data = wicklongMiss; 
class group time subj ; 
model dv = group time group*time/s; 
random int /subject = subj type = cs; 
run; 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

Variance subj 2677.70 

CS subj -119.13 

Residual   2954.57 

 

Fit Statistics 

-2 Res Log Likelihood 905.4 

AIC (smaller is better) 911.4 



Fit Statistics 

AICC (smaller is better) 911.7 

BIC (smaller is better) 914.9 

 

Null Model Likelihood Ratio Test 

DF Chi-Square Pr > ChiSq 

2 19.21 <.0001 

 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 57 16.52 0.0001 

time 3 57 32.45 <.0001 

group*time 3 57 6.09 0.0011 

 

Contrasts 

Label Num DF Den DF F Value Pr > F 

time main effect 3 57 32.45 <.0001 

time linear 1 57 63.90 <.0001 

time quadratic 1 57 23.58 <.0001 

time cubic 1 57 2.69 0.1067 

 

 

 
These results are essentially the same as those we found using the repeated command as 
setting type = cs. By only specifying “int” as random we have not allowed the slopes to 
differ, and thus we have forced compound symmetry. We would have virtually the same 
output even if we specified that the covariance structure be “unstructured.” 
 
Now I want to go a step further. Here I am venturing into territory that I know even less 
well, but I think that I am correct in what follows. 



 
Remember that when we specify compound symmetry we are specifying a pattern that 
results from subjects showing parallel trends over time. So when we replace our repeated 
statement with a random statement and specify that “int” is the only random component, 
we are doing essentially what the repeated statement did. We are not allowing for 
different slopes. But in the next analysis I am going to allow slopes to differ by entering 
“time” in the random statement along with “int.” What I will obtain is a solution where 
the slope of time has a variance greater than 0. The commands for this analysis follow. 
Notice two differences. We suddenly have a variable called “timecont.” Recall that the 
class command converts time to a factor. That is fine, but for the random variable I want 
time to be continuous. So I have just made a copy of the original “time,” called it 
“timecont,” and not put it in the class statement. Notice that I do not include “type = cs” 
in the following syntax because by allowing for different slopes I am allowing for a 
pattern of correlations that do not fit the assumption of compound symmetry. 
 
Proc Mixed data = wicklongMiss ; 
class group time subj ; 
model dv = group time group*time; 
random int timecont /subject = subj ; 
run; 

 

Fit Statistics 

-2 Res Log Likelihood 905.0 

AIC (smaller is better) 911.0 

AICC (smaller is better) 911.4 

BIC (smaller is better) 914.6 

 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 35 15.24 0.0004 

time 3 35 31.70 <.0001 

group*time 3 35 6.53 0.0013 

 
 
  

 

 

 



Notice that the pattern of results is similar to what we found in the earlier analyses. 
However we only have 35 df for error for each test, and our AIC fit statistic is 911.0, 
which is higher than for other models and represents a poorer fit. My preference would be 
to stay with the AR1 structure on the repeated command. That looks to me to be the best 
fitting model and one that makes logical sense. 
 
There is one more approach recommended by Guerin and Stroop (2000). They suggest 
that when we are allowing a model that has an AR(1) or UN covariance structure, we 
combine the random and repeated commands in the same run. According to Littell et al., 
they showed that “a failure to model a separate between-subjects random effect can 
adversely affect inference on time and treatment × time effects.” 
 
This analysis would include both kinds of terms and is shown below: 
 
proc mixed data = wicklongMiss; 
class group time subj ; 
model dv = group timefact group*time/solution; 
random subj(group);  
repeated time/ type = AR(1) subject = subj(group); 
run; 
 
 
Partial results follow: 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

subj(group)   0 

AR(1) subj(group) 0.6182 

Residual   5349.89 

 

Fit Statistics 

-2 Res Log Likelihood 895.1 

AIC (smaller is better) 899.1 

AICC (smaller is better) 899.2 

BIC (smaller is better) 901.4 

 



 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 22 17.32 0.0004 

time 3 57 30.82 <.0001 

group*time 3 57 7.72 0.0002 

 
 

You may have noticed something interesting about these results. These are exactly the 
same results that we obtained when we used 
 
  Proc Mixed data = wicklongMiss; 

class group time subj; 
model dv = group time group*time; 
repeated time /subject = subj type = AR(1); 
run; 

 
which is the same commands without the random statement. Why then do we need the 
random statement if it is going to return the same analysis? I don’t know, and I’m not 
alone—see below. 
 
 
Solution for fixed effects 
 
I have deliberately avoided talking about the section of the output labeled “Solution for 
fixed effects,” and have actually left off the solution command in the analyses that I have 
run. But now is the time to at least explain what you see there. 
 
I will use the type = AR(1) command on the repeated statement because that produces 
the best fit for our data. I will also add a command to print out least squares estimates of 
cell means because they will be necessary to understand what the fixed effects are. The 
commands and the relevant part of the printout follow. I have added the lsmeans 
command so that the program will print out the least squares means estimates for the two-
way table. 
 
 
Proc Mixed data = wicklongMiss ; 
class group time subj; 
model dv = group time group*time /solution; 
repeated /subject = group(subj) type = AR(1) rcorr; 
lsmeans group*time; 
run;     
 

 



Covariance Parameter Estimates 

Cov Parm Subject Estimate 

subj(group)   0 

AR(1) subj(group) 0.6182 

Residual   5349.89 

 

Fit Statistics 

-2 Res Log Likelihood 895.1 

AIC (smaller is better) 899.1 

AICC (smaller is better) 899.2 

BIC (smaller is better) 901.4 

 

Solution for Fixed Effects 

Effect group time Estimate Standard 
Error 

DF t Value Pr > |t| 

Intercept     106.64 23.4064 22 4.56 0.0002 

group 1   95.0006 31.9183 22 2.98 0.0070 

group 2   0 . . . . 

time   0 173.78 27.9825 57 6.21 <.0001 

time   1 -8.9994 26.0818 57 -0.35 0.7313 

time   3 -10.8539 21.6965 57 -0.50 0.6188 

time   6 0 . . . . 

group*time 1 0 -71.0839 38.5890 57 -1.84 0.0707 

group*time 1 1 57.7765 35.6974 57 1.62 0.1111 

group*time 1 3 26.6348 29.2660 57 0.91 0.3666 



Solution for Fixed Effects 

Effect group time Estimate Standard 
Error 

DF t Value Pr > |t| 

group*time 1 6 0 . . . . 

group*time 2 0 0 . . . . 

group*time 2 1 0 . . . . 

group*time 2 3 0 . . . . 

group*time 2 6 0 . . . . 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 22 17.32 0.0004 

time 3 57 30.82 <.0001 

group*time 3 57   7.72 0.0002 

 

Least Squares Means 

Effect group time Estimate Standard 
Error 

DF t Value Pr > |t| 

group*time 1 0 304.33 21.1146 57 14.41 <.0001 

group*time 1 1 250.41 21.5400 57 11.63 <.0001 

group*time 1 3 217.42 21.5410 57 10.09 <.0001 

group*time 1 6 201.64 21.7007 57 9.29 <.0001 

group*time 2 0 280.42 21.1146 57 13.28 <.0001 

group*time 2 1 97.6361 21.6454 57 4.51 <.0001 

group*time 2 3 95.7817 22.2942 57 4.30 <.0001 

group*time 2 6 106.64 23.4064 57 4.56 <.0001 



. 

 

Because of the way that SAS or SPSS sets up dummy variables to represent treatment 
effects, the intercept will represent the cell for the last time and the last group. In other 
words cell24. Notice that that cell mean is 106.64, which is also the intercept. The effect 
for Group 1 is the difference between the mean of the last time in the first group (cell14 
and the intercept, which equals 201.64 – 106.64 = 95.00(within rounding error). That is 
the treatment effect for group 1 given in the solutions section of the table. Because there 
is only 1 df for groups, we don’t have a treatment effect for group 2, though we can 
calculate it as -95.00 because treatment effects sum to zero. For the effect of Time 0, we 
take the deviation of the cell for Time 0 for the last group (group 2) from the intercept, 
which equals 280.42 – 106.64 = 173.78. For Times 2 and 3 we would subtract 106.64 
from 97.6361 and 95.7817, respectively, giving -8.9994 and -10.8539. With 3 df for 
Time, we don’t have an effect for Time 4, but again we can obtain it by subtraction as 0 – 
(173.78-8.9994-10.8539) = -53.9267. For the interaction effects we take cell means 
minus row and column effects. So for Time11 we have 304.33-(95.00 + 173.78 +106.64) 
= -71. Similarly for the other interaction effects.  
 
I should probably pay a great deal more attention to these treatment effects, but I will not 
do so. If they were expressed in terms of deviations from the grand mean, grand mean, 
rather than with respect to cell24 I could get more excited about them. (If SAS set up its 
design matrix differently they would come out that way. But they don’t here.)  I know 
that most statisticians will come down on my head for making such a statement, and 
perhaps I am being sloppy, but I think that I get more information from looking at cell 
means and F statistics.  
 
And now the big “BUT!” 
 
Well after this page was originally written and I thought that I had everything all figured 
out (well, I didn’t really think that, but I hoped), I discovered that life is not as simple as 
we would like it to be. The classic book in the field is Littell et al. (2006). They have 
written about SAS in numerous books, and some of them worked on the development of 
Proc Mixed. However others who know far more statistics than I will ever learn, and 
who have used SAS for years, have had great difficulty in deciding on the appropriate 
ways of writing the syntax. An excellent paper in this regard is Overall, Ahn, 
Shivakumar, & Kalburgi (1999). They spent 27 pages trying to decide on the correct 
analysis and ended up arguing that perhaps there is a better way than using mixed models 
anyway. Now they did have somewhat of a special problem because they were running 
an analysis of covariance because missing data was dependent, in part, on baseline 
measures. However other forms of analyses will allow a variable to be both a dependent 
variable and a covariate. (If you try this with SPSS you will be allowed to enter Time1 as 
a covariate, but the solution is exactly the same as if you had not. I haven’t yet tried this 
is R or S-Plus.)  This points out that all of the answers are not out there. If John Overall 
can’t figure it out, how are you and I supposed to? 
 
That last paragraph might suggest that I should just eliminate this whole document, but 
that is perhaps too extreme. Proc Mixed is not going to go away, and we have to get used 



to it. All that I suggest is a bit of caution. But if you do want to consider alternatives, look 
at the Overall et al. paper and read what they have to say about what they call Two-Stage 
models. Then look at other work that this group has done. 
 
But I can’t leave this without bringing in one more complication. Overall & Tonidandel 
(2007) recommend a somewhat different solution by using a continuous measure of time 
on the model statement. In other words, specifying time on the class variable turns time 
into a factor with 4 levels. If I had earlier said timecont = time in a data statement, then 
Overall & Tonidandel would have me specify the model statement as model dv = group 
timecont  group*timecont. / solution;   Littell et al. 2006 refer to this as “Comparisons 
using regression,” but it is not clear, other than to test nonlinearity, why we would do 
this. It is very close to, but not exactly the same as, a test of linear and quadratic 
components. (For quadratic you would need to include time2  and its interaction with 
group.) It yields a drastically different set of results, with 1 df for timecont and for 
timecont×group. The 1 df is understandable because you have one degree of freedom for 
each contrast. The timecont × group interaction is not close to significant, which may 
make sense if you look at the plotted data, but I’m not convinced. I am going to stick with 
my approach, at least for now. 
 
The SAS printout follows based on the complete (not the missing) data. 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

group 1 22 9.80 0.0049 

timecont 1 70 29.97 <.0001 

timecont*group 1 70 0.31 0.5803 

 

 

Compare this with the Proc GLM  solution for linear trend given earlier.  
 
Contrast Variable: time_1  The Linear Effect of Time (intervals = 0,1,2,3) 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

      Mean                         1     168155.6270     168155.6270      36.14    <.0001 

      group                        1       1457.2401       1457.2401       0.31    0.5814 

      Error                       22     102368.7996       4653.1273 

 

 
They are not the same, though they are very close. (I don’t know why they aren’t the 
same, but I suspect that it has to do with the fact that Proc GLM  uses a least squares 
solution while Proc Mixed uses REML.) Notice the different degrees of freedom for 
error, and remember that “mean” is equivalent to “timecont” and “group” is equivalent to 
the interaction. 
 



 
 
 
What about imputation of missing values? 
 
There are many ways of dealing with missing values (Howell, 2008), but a very common 
approach is known as Estimation/Maximization (EM). To describe what EM does in a 
very few sentences, it basically uses the means and standard deviations of the existing 
observations to make estimates of the missing values. Having those estimates changes the 
mean and standard deviation of the data, and those new means and standard deviations 
are used as parameter estimates to make new predictions for the (originally) missing 
values. Those, in turn, change the means and variances and a new set of estimated values 
is created. This process goes on iteratively until it stabilizes.  
 
I used a (freely available) program called NORM  (Shafer & Olson, 1998) to impute new 
data for missing values. I then took the new data, which was a complete data set, and 
used Proc GLM   in SAS to run the analysis of variance on the completed data set. I 
repeated this several times to get an estimate of the variability in the results. The resulting 
Fs for three replications are shown below, along with the results of using Proc Mixed on 
the missing data with an autoregressive covariance structure and simply using the 
standard ANOVA with all subjects having any missing data deleted. 
 
 Replication 1 Replication 2 Replication 3 AR1 With 

Missing 
Group 17.011 15.674 18.709 18.03 8.97 
Time 35.459 33.471 37.960 29.55 27.34 
Group * 
Time 

 5.901 5.326 7.292 7.90 2.81 

 
I will freely admit that I don’t know exactly how to evaluate these results, but they are at 
least in line with each other except for the last column when uses casewise deletion. I 
find them encouraging. 
 
 
 
I need to add a section on references. Some good ones on the web are: 
 
http://www.uoregon.edu/~robinh/mixed_sas.html 
http://www.ats.ucla.edu/stat/sas/faq/anovmix1.htm 
http://www.ats.ucla.edu/STAT/SAS/library/mixedglm.pdf 
http://ssc.utexas.edu/consulting/answers/sas/sas94.html 
http://quiro.uab.es/jpa/pdf/Littell_mixed_JAS.pdf 
 
Good coverage of alternative covariance structures 
     http://cda.morris.umn.edu/~anderson/math4601/gopher/SAS/longdata/structures.pdf 
 



The main reference for SAS Proc Mixed is 
 
Little, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D., & Schabenberger, O. (2006)  
SAS for mixed models, Cary, NC SAS Institute Inc. 
 
The Overall et al. reference that I referred to is  
 
Overall, J. E., Ahn, C., Shivakumar, C., & Kalburgi, Y. (1999). Problematic formulations 
of SAS Proc.Mixed models for repeated measurements. Journal of Biopharmaceutical 
Statistics, 9, 189-216. (That probably is not a journal that you read on a monthly basis, 
but the article is not too technical.) 
 
The classic reference for R is Penheiro, J. C. & Bates, D. M. (2000) Mixed-effects models 
in S and S-Plus. New York: Springer. 
 
For imputation the best reference is 
 
Shafer, J. L. & Olson, M. K. (1998). Multiple imputation for multivariate missing-data 
problems: A data analysts perspective. Multivariate Behavioral Research, 33, 545-571. 
 


